Mathematics: analysis and approaches Higher level	Name
Paper 1	
Date:	
2 hours	

Instructions to candidates

- Write your name in the box above.
- Do not open this examination paper until instructed to do so.
- You are not permitted access to any calculator for this paper.
- Section A: answer all questions. Answers must be written in the answer boxes provided.
- Section B: answer all questions on the answer sheets provided. Write your name on each answer sheet and attach them to this examination paper.
- Unless otherwise stated in the question, all numerical answers must be given exactly or correct to three significant figures.
- A clean copy of the mathematics: analysis and approaches HL formula booklet is required for this paper.
- The maximum mark for this examination paper is [110 marks].

exam: 12 pages

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Section A (56 marks)

		Continue (contains)	
An	swer	all questions in the boxes provided. Working may be continued below the lines, if necess	sary
1.	[Ma	ximum mark: 6]	
	Con	nsider the complex number $z=1+i$.	
	(a)	Express z in modulus-argument form $r \operatorname{cis} \theta$.	[3]
	(b)	Hence, find z^9 and express it in Cartesian form $a+b\mathrm{i}$.	[3]
	٠		
	•		

2. [Maximum mark: 4]

Below is the graph of the function g for $-3 \le x \le 3$.

Another function, h, can be written in the form h(x) = a[g(x+b)]. The graph of h is shown below. Write down the value of a and the value of b.

	 	• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • •	 		• • • • • • • • • • • • • • • • • • • •

3. [Maximum mark: 7]

A portion of the graph of $f(x) = -3\sin(4x)$ is shown. The point P is an *x*-intercept with coordinates (p,0).

(a) Find the value of p. [2]

(b) The point Q is a minimum. Write down the coordinates of Q.

[2]

[3]

(c) Find the area of the shaded region that is bounded by f and the x-axis.

	 • • • •	 	 • • • •	• • • •	 • • • •	 • • • •	 	 	 	 	 • • • •	 	• • •	 • • • •	 	
	 • • • •	 	 	• • • •	 	 • • • •	 	 	 	 	 • • • •	 		 	 	
	 	 	 		 	 	 	 	 	 	 • • • •	 		 	 	
	 	 	 		 	 • • • •	 	 	 	 	 • • • •	 		 	 	
• •	 	 	 		 	 	 	 	 	 	 	 		 	 	
• •	 	 	 		 	 	 	 	 	 	 	 		 	 	
	 	 	 		 	 	 	 	 	 	 	 		 	 • • • •	

4. [Maximum mark: 6]

The sum of the first three terms of an arithmetic sequence is 6 and the fourth term is 16. Find the first term, u_1 , and the common difference, d, of the sequence.

(a) Given $f(x) = x^2 + 4x - 10$, $x \le -2$ show that $f^{-1}(x) = -2 - \sqrt{x + 14}$, $x \ge -14$.	≥ -14 . [4]
--	------------------

- 6 -

(b) The graphs of f and f^{-1} intersect at point C. Find the coordinates of C. [3]

6. [Maximum mark: 6]

Show that $\log_2 \sqrt{8} + \log_b \sqrt{ab} = \frac{\ln(ab^4)}{\ln(b^2)}$

-7-

7. [Maximum mark: 6]

When the expression $3x^3-6x^2+ax-1$ is divided by (x+1) it produces the same remainder as when the expression is divided by (x-3). Find the value of a.

••••••

8. [Maximum mark: 7]

Consider the following system of linear equations representing three planes.

A solution to the system is an ordered triple (x, y, z) – a point in space.

$$2x - y + 2z = 1$$

$$x + y - 2z = 2$$

$$x - 2y + 4z = -1$$

(a) Show, with justification, that the system has an infinite number of solutions. [4]

- 9 -

(b) Find the equation of the line, in parametric form, on which the solutions lie. [3]

9. [Maximum mark: 7]

Find the value of $\int_0^{\frac{1}{2}} \frac{14x+1}{2x^2-x-1} dx$ giving your answer in the form $a \ln b$ where $a,b \in \mathbb{Z}$.

Do not write solutions on this page.

Section B (54 marks)

- 11 -

Answer all the questions on the answer sheets provided. Please start each question on a new page.

10. [Maximum mark: 20]

A spinner consists of an arrow that rotates about the centre of a circle so that one of three numbers is randomly selected (see diagram below). There is also a box containing three numbered cards as shown below. S is the sum of two numbers – one selected randomly with the spinner and the other from randomly selecting one of the cards from the box.

- (a) Write down the four different possible values of *S*. [2]
- (b) Find the probability of each value of *S*. [5]
- (c) Show that the expected value of S is $\frac{119}{12}$. [2]
- (d) Anna plays a game where she wins \$15 if S is an even number and loses \$10 if S is an odd number. Sophie plays the game 12 times. Find the amount of money she expects to have at the end of the 12 games.[6]
- (e) Anna now plays a different game where she wins \$14 if *S* is an even number. She loses *x* dollars if *S* is an odd number. Find the value of *x* so that the game is fair. [5]

11. [Maximum mark: 16]

- (a) Given that $(x+iy)^2 = 7-24i$, $x, y \in \mathbb{R}$, show that
 - (i) $x^2 y^2 = 7$;

(ii)
$$xy = -12$$
;

- (b) Hence, find the two square roots of 7-24i and express them in Cartesian form. [6]
- (c) For any complex number, show that $(z^*)^2 = (z^2)^*$. [4]
- (d) Hence, write down the two square roots of 7 + 24i in Cartesian form. [2]

Do not write solutions on this page.

12. [Maximum mark: 18]

Consider the rational function $f(x) = \frac{1}{x-1}$.

- (a) The notation $f^{(n)}(x)$ represents the *n*th derivative of *f*. Show that $f^{(3)}(x) = \frac{-6}{(x-1)^4}$. [4]
- (b) Using mathematical induction, prove that the *n*th derivative of $\frac{1}{x-1}$ is $\frac{(-1)^n n!}{(x-1)^{n+1}}$. That is,

prove the statement
$$f^{(n)}(x) = \frac{(-1)^n n!}{(x-1)^{n+1}}$$
. [8]

Consider a different rational function $g(x) = \frac{x}{x-1}$.

- (c) Prove that the graph of g can be produced by translating the graph of f one unit vertically in the positive g direction. [3]
- (d) Hence, write down the formula for the nth derivative of g. [1]

The graph of g is symmetric about the line y = x.

(e) Deduce a statement regarding the function y = g(x) and its inverse $y = g^{-1}(x)$. [2]